Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Guillaume Butler-Laporte; Gundula Povysil; Jack Kosmicki; Elizabeth T Cirulli; Theodore Drivas; Simone Furini; Chadi Saad; Axel Schmidt; Pawel Olszewski; Urszula Korotko; Mathieu Quinodoz; Elifnaz Celik; Kousik Kundu; Klaudia Walter; Junghyung Jung; Amy D Stockwell; Laura G Sloofman; Alexander W Charney; Daniel Jordan; Noam Beckmann; Bartlomiej Przychodzen; Timothy Chang; Tess D Pottinger; Ning Shang; Fabian Brand; Francesca Fava; Francesca Mari; Karolina Chwialkowska; Magdalena Niemira; Szymon Pula; J Kenneth Baillie; Alex Stuckey; Andrea Ganna; Konrad J Karczewski; Kumar Veerapen; Mathieu Bourgey; Guillaume Bourque; Robert JM Eveleigh; Vincenzo Forgetta; David Morrison; David Langlais; Mark Lathrop; Vincent Mooser; Tomoko Nakanishi; Robert Frithiof; Michael Hultstrom; Miklos Lipcsey; Yanara Marincevic-Zuniga; Jessica Nordlund; Kelly M Schiabor Barrett; William Lee; Alexandre Bolze; Simon White; Stephen Riffle; Francisco Tanudjaja; Efren Sandoval; Iva Neveux; Shaun Dabe; Nicolas Casadei; Susanne Motameny; Manal Alaamery; Salam Massadeh; Nora Aljawini; Mansour S Almutairi; Yaseen M Arab; Saleh A Alqahtan; Fawz S Al Harthi; Amal Almutairi; Fatima Alqubaishi; Sarah Alotaibi; Albandari Binowayn; Ebtehal A Alsolm; Hadeel El Bardisy; Mohammad Fawzy; - COVID-19 Host Genetics Initiative; - DeCOI Host Genetics Group; - GEN-COVID Multicenter Study; - GenOMICC Consortium; - Japan COVID-19 Task Force; - Regeneron Genetics Center; Daniel H Geschwind; Stephanie Arteaga; Alexis Stephens; Manish J Butte; Paul C Boutros; Takafumi N Yamaguchi; Shu Tao; Stefan Eng; Timothy Sanders; Paul J Tung; Michael E Broudy; Yu Pan; Alfredo Gonzalez; Nikhil Chavan; Ruth Johnson; Bogdan Pasaniuc; Brian Yaspan; Sandra Smieszek; Carlo Rivolta; Stephanie Bibert; Pierre-Yves Bochud; Maciej Dabrowski; Pawel Zawadzki; Mateusz Sypniewski; El?bieta Kaja; Pajaree Chariyavilaskul; Voraphoj Nilaratanakul; Nattiya Hirankarn; Vorasuk Shotelersuk; Monnat Pongpanich; Chureerat Phokaew; Wanna Chetruengchai; Yosuke Kawai; Takanori Hasegawa; Tatsuhiko Naito; Ho Namkoong; Ryuya Edahiro; Akinori Kimura; Seishi Ogawa; Takanori Kanai; Koichi Fukunaga; Yukinori Okada; Seiya Imoto; Satoru Miyano; Serghei Mangul; Malak S Abedalthagafi; Hugo Zeberg; Joseph J Grzymski; Nicole L Washington; Stephan Ossowski; Kerstin U Ludwig; Eva C Schulte; Olaf Riess; Marcin Moniuszko; Miroslaw Kwasniewski; Hamdi Mbarek; Said I Ismail; Anurag Verma; David B Goldstein; Krzysztof Kiryluk; Alessandra Renieri; Manuel Ferreira; J Brent Richards.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.28.22273040

ABSTRACT

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,048 severe disease cases and 571,009 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p=5.41x10-7). These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.29.22270094

ABSTRACT

Genetic predisposition to venous thrombosis may impact COVID-19 infection and its sequelae. Participants in the ongoing prospective cohort study, Million Veteran Program (MVP), who were tested for COVID-19, with European ancestry, were evaluated for associations with polygenic venous thromboembolic risk, Factor V Leiden mutation (FVL) (rs6025) and prothrombin gene 3 -UTR mutation (F2 G20210A)(rs1799963), and their interactions. Logistic regression models assessed genetic associations with VTE diagnosis, COVID-19 (positive) testing rates and outcome severity (modified WHO criteria), and post-test conditions, adjusting for outpatient anticoagulation medication usage, age, sex, and genetic principal components. 108,437 out of 464,961 European American MVP participants were tested for COVID-19 with 9786 (9%) positive. PRS(VTE), FVL, F2 G20210A were not significantly associated with the propensity of being tested for COVID-19. PRS(VTE) was significantly associated with a positive COVID-19 test in F5 wild type (WT) individuals (OR 1.05; 95% CI [1.02-1.07]), but not in FVL carriers (0.97, [0.91-1.94]). There was no association with severe outcome for FVL, F2 G20210A or PRS(VTE). Outpatient anticoagulation usage in the two years prior to testing was associated with worse clinical outcomes. PRS(VTE) was associated with prevalent VTE diagnosis among both FVL carriers or F5 wild type individuals as well as incident VTE in the two years prior to testing. Increased genetic propensity for VTE in the MVP was associated with increased COVID-19 positive testing rates, suggesting a role of coagulation in the initial steps of COVID-19 infection. Key PointsO_LIIncreased genetic predisposition to venous thrombosis is associated with increased COVID-19 positive testing rates. C_LIO_LIPRS for VTE further risk stratifies factor V Leiden carriers regarding their VTE risk. C_LI


Subject(s)
Venous Thromboembolism , COVID-19 , Venous Thrombosis
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.28.21263911

ABSTRACT

RationaleA common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis, but its role in the SARS-CoV-2 infection and disease severity is unclear. ObjectivesTo assess whether rs35705950-T confers differential risk for clinical outcomes associated with COVID-19 infection among participants in the Million Veteran Program (MVP) and COVID-19 Host Genetics Initiative (HGI). MethodsMVP participants were examined for an association between the incidence or severity of COVID-19 and the presence of a MUC5B rs35705950-T allele. Comorbidities and clinical events were extracted from the electronic health records (EHR). The analysis was performed within each ancestry group in the MVP, adjusting for sex, age, age2, and first twenty principal components followed by a trans-ethnic meta-analysis. We then pursued replication and performed a meta-analysis with the trans-ethnic summary statistics from the HGI. A phenome-wide association study (PheWAS) of the rs35705950-T was conducted to explore associated pathophysiologic conditions. Measurements and Main ResultsA COVID-19 severity scale was modified from the World Health Organization criteria, and phenotypes derived from the International Classification of Disease-9/10 were extracted from EHR. Presence of rs35705950-T was associated with fewer hospitalizations (Ncases=25353, Ncontrols=631,024; OR=0.86 [0.80-0.93], p=7.4 x 10-5) in trans-ethnic meta-analysis within MVP and joint meta-analyses with the HGI (N=1641311; OR=0.89 [0.85-0.93], p =1.9 x 10-6). Moreover, individuals of European Ancestry with at least one copy of rs35705950-T had fewer post-COVID-19 pneumonia events (OR=0.85 [0.76-0.96], p =0.008). PheWAS exclusively revealed pulmonary involvement. ConclusionsThe MUC5B variant rs35705950-T is protective in COVID-19 infection.


Subject(s)
Lung Diseases , Pneumonia , Idiopathic Pulmonary Fibrosis , COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-673011.v1

ABSTRACT

We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection ( ACE2, TMPRSS2, DPP4 , and LY6E ). We analyzed novel data from 2,012 ethnically diverse Africans and 15,997 individuals of European and African ancestry with electronic health records, and integrated with global data from the 1000GP. At ACE2 , we identified 41 non-synonymous variants that were rare in most populations, several of which impact protein function. However, three non-synonymous variants were common among Central African hunter-gatherers from Cameroon and are on haplotypes that exhibit signatures of positive selection. We identify strong signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2 , we identified 13 amino acid changes that are adaptive and specific to the human lineage. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260221

ABSTRACT

Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-{lambda}1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1. We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.28.21259529

ABSTRACT

The COVID-19 pandemic caused by SARS-COV-2 has had a devastating impact on population health. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (ACE2, TMPRSS2, DPP4, and LY6E). We analyzed novel data from 2,012 ethnically diverse Africans, 15,997 individuals of European (7,061) and African (8,916) ancestry recruited by the Penn Medicine BioBank (PMBB), and comparative data from 2,504 individuals from the 1000 Genomes project. At ACE2 we identified 41 non-synonymous variants, found to be at low frequency in most populations. However, three non-synonymous variants were frequent among Central African hunter-gatherers (CAHG) from Cameroon, and signatures of positive selection could be detected on haplotypes encompassing those variants. We also detected signatures of positive selection for variants at regulatory regions upstream of ACE2 in diverse African populations. At TMPRSS2, we identified 48 non-synonymous variants, several of which are common in global populations, and 13 amino acid changes that are fixed in the human lineage after divergence from Chimpanzee. At DPP4 and LY6E most variants were rare in global populations indicating that purifying selection is acting at these loci. At all four loci, we identified common non-coding variants associated with gene expression that vary in frequency across global populations. By analyzing electronic health records from the PMBB we discovered genetic associations with clinical phenotypes, such as respiratory failure with ACE2 and upper respiratory tract infection with DPP4. Our study provides new insights into global variation at genes potentially affecting susceptibility to SARS-CoV-2 infection.


Subject(s)
Respiratory Tract Infections , COVID-19 , Respiratory Insufficiency
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.18.21257396

ABSTRACT

The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n=35) or hospitalization (n=42) due to severe COVID-19 using genome-wide association summary from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (nrs495828= 53 and nrs505922=59); strongest association with venous embolism, odds ratio (ORrs495828 1.33 (p=1.32 x 10-199), and thrombosis ORrs505922 1.33, p=2.2 x10-265. Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p=4.12 x 10-191; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p=2.26x 10-12. The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p=6.48 x10-23, lupus OR 0.84, p=3.97 x 10-06. PheWAS stratified by genetic ancestry demonstrated differences in genotype-phenotype associations across ancestry. LMNA (rs581342) associated with neutropenia OR 1.29 p=4.1 x 10-13 among Veterans of African ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.20.21254005

ABSTRACT

ABSTRACT A locus containing OAS1/2/3 has been identified as a risk locus for severe COVID-19 among Europeans ancestry individuals, with a protective haplotype of ∼75 kilobases derived from Neanderthals. Here, we show that among several potentially causal variants at this locus, a splice variant of OAS1 occurs in people of African ancestry independently of the Neanderthal haplotype and confers protection against COVID-19 of a magnitude similar to that seen in individuals without African ancestry.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.17.21251933

ABSTRACT

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome (MERS-CoV), and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, despite limited overall sequence conservation, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.34 - 0.76], p = 0.001). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type dependent manner. Targeting GSK-3 may therefore provide a new approach to treat COVID-19 and future coronavirus outbreaks.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.15.21249810

ABSTRACT

Multiple studies have demonstrated the negative impact of cancer care delays during the COVID-19 pandemic, and transmission mitigation techniques are imperative for continued cancer care delivery. To gauge the effectiveness of these measures at the University of Pennsylvania, we conducted a longitudinal study of SARS-CoV-2 antibody seropositivity and seroconversion in patients presenting to infusion centers for cancer-directed therapy between 5/21/2020 and 10/8/2020. Participants completed questionnaires and had up to five serial blood collections. Of 124 enrolled patients, only two (1.6%) had detectable SARS-CoV-2 antibodies on initial blood draw, and no initially seronegative patients developed newly detectable antibodies on subsequent blood draw(s), corresponding to a seroconversion rate of 0% (95%CI 0.0-4.1%) over 14.8 person-years of follow up, with a median of 13 healthcare visits per patient. These results suggest that cancer patients receiving in-person care at a facility with aggressive mitigation efforts have an extremely low likelihood of COVID-19 infection.


Subject(s)
Neoplasms , COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.14.20248176

ABSTRACT

The need to identify and effectively treat COVID-19 cases at highest risk for severe disease is critical. We identified seven common genetic variants (three novel) that modulate COVID-19 susceptibility and severity, implicating IFNAR2, CCHCR1, TCF19, SLC6A20 and the hyaluronan pathway as potential therapeutic targets. A high genetic burden was strongly associated with increased risk of hospitalization and severe disease among COVID-19 cases, especially among individuals with few known risk factors.


Subject(s)
COVID-19
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.06.20227215

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the COVID-19 pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 204 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 252 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that [~]23% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but paradoxically these hCoV cross-reactive antibodies were boosted upon SARS-CoV-2 infection.


Subject(s)
COVID-19
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.14.20174961

ABSTRACT

Cancer patients are a vulnerable population postulated to be at higher risk for severe COVID-19 infection. Increased COVID-19 morbidity and mortality in cancer patients may be attributable to age, comorbidities, smoking, healthcare exposure, and cancer treatments, and partially to the cancer itself. Most studies to date have focused on hospitalized patients with severe COVID-19, thereby limiting the generalizability and interpretability of the association between cancer and COVID-19 severity. We compared outcomes of SARS-CoV-2 infection in 323 patients enrolled prior to the pandemic in a large academic biobank (n=67 cancer patients and n=256 non-cancer patients). After adjusting for demographics, smoking status, and comorbidities, a diagnosis of cancer was independently associated with higher odds of hospitalization (OR 2.16, 95% CI 1.12-4.18) and 30-day mortality (OR 5.67, CI 1.49-21.59). These associations were primarily driven by patients with active cancer. These results emphasize the critical importance of preventing SARS-CoV-2 exposure and mitigating infection in cancer patients.


Subject(s)
COVID-19 , Neoplasms
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.11.20173120

ABSTRACT

Currently, the number of patients with COVID-19 has significantly increased. Thus, there is an urgent need for developing treatments for COVID-19. Drug repurposing, which is the process of reusing already-approved drugs for new medical conditions, can be a good way to solve this problem quickly and broadly. Many clinical trials for COVID-19 patients using treatments for other diseases have already been in place or will be performed at clinical sites in the near future. Additionally, patients with comorbidities such as diabetes mellitus, obesity, liver cirrhosis, kidney diseases, hypertension, and asthma are at higher risk for severe illness from COVID-19. Thus, the relationship of comorbidity disease with COVID-19 may help to find repurposable drugs. To reduce trial and error in finding treatments for COVID-19, we propose building a network-based drug repurposing framework to prioritize repurposable drugs. First, we utilized knowledge of COVID-19 to construct a disease-gene-drug network (DGDr-Net) representing a COVID-19-centric interactome with components for diseases, genes, and drugs. DGDr-Net consisted of 592 diseases, 26,681 human genes and 2,173 drugs, and medical information for 18 common comorbidities. The DGDr-Net recommended candidate repurposable drugs for COVID-19 through network reinforcement driven scoring algorithms. The scoring algorithms determined the priority of recommendations by utilizing graph-based semi-supervised learning. From the predicted scores, we recommended 30 drugs, including dexamethasone, resveratrol, methotrexate, indomethacin, quercetin, etc., as repurposable drugs for COVID-19, and the results were verified with drugs that have been under clinical trials. The list of drugs via a data-driven computational approach could help reduce trial-and-error in finding treatment for COVID-19.


Subject(s)
Diabetes Mellitus , Asthma , Obesity , Kidney Diseases , Hypertension , COVID-19 , Liver Cirrhosis , Refractive Errors
15.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2008.05377v1

ABSTRACT

Currently, the number of patients with COVID-19 has significantly increased. Thus, there is an urgent need for developing treatments for COVID-19. Drug repurposing, which is the process of reusing already-approved drugs for new medical conditions, can be a good way to solve this problem quickly and broadly. Many clinical trials for COVID-19 patients using treatments for other diseases have already been in place or will be performed at clinical sites in the near future. Additionally, patients with comorbidities such as diabetes mellitus, obesity, liver cirrhosis, kidney diseases, hypertension, and asthma are at higher risk for severe illness from COVID-19. Thus, the relationship of comorbidity disease with COVID-19 may help to find repurposable drugs. To reduce trial and error in finding treatments for COVID-19, we propose building a network-based drug repurposing framework to prioritize repurposable drugs. First, we utilized knowledge of COVID-19 to construct a disease-gene-drug network (DGDr-Net) representing a COVID-19-centric interactome with components for diseases, genes, and drugs. DGDr-Net consisted of 592 diseases, 26,681 human genes and 2,173 drugs, and medical information for 18 common comorbidities. The DGDr-Net recommended candidate repurposable drugs for COVID-19 through network reinforcement driven scoring algorithms. The scoring algorithms determined the priority of recommendations by utilizing graph-based semi-supervised learning. From the predicted scores, we recommended 30 drugs, including dexamethasone, resveratrol, methotrexate, indomethacin, quercetin, etc., as repurposable drugs for COVID-19, and the results were verified with drugs that have been under clinical trials. The list of drugs via a data-driven computational approach could help reduce trial-and-error in finding treatment for COVID-19.


Subject(s)
Diabetes Mellitus , Asthma , Obesity , Kidney Diseases , Hypertension , COVID-19 , Liver Cirrhosis , Refractive Errors
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.08.20149179

ABSTRACT

Limited data are available for pregnant women affected by SARS-CoV-2. Serological tests are critically important to determine exposure and immunity to SARS-CoV-2 within both individuals and populations. We completed SARS-CoV-2 serological testing of 1,293 parturient women at two centers in Philadelphia from April 4 to June 3, 2020. We tested 834 pre-pandemic samples collected in 2019 and 15 samples from COVID-19 recovered donors to validate our assay, which has a [~]1% false positive rate. We found 80/1,293 (6.2%) of parturient women possessed IgG and/or IgM SARS-CoV-2-specific antibodies. We found race/ethnicity differences in seroprevalence rates, with higher rates in Black/non-Hispanic and Hispanic/Latino women. Of the 72 seropositive women who also received nasopharyngeal polymerase chain reaction testing during pregnancy, 46 (64%) were positive. Continued serologic surveillance among pregnant women may inform perinatal clinical practices and can potentially be used to estimate seroprevalence within the community. One Sentence SummarySix percent of pregnant women delivering from April 4 to June 3, 2020 had serological evidence of exposure to SARS-CoV-2 with notable race/ethnicity differences in seroprevalence rates.


Subject(s)
COVID-19
17.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-27402.v1

ABSTRACT

SARS-CoV-2 has led to a pandemic of respiratory and multisystem disease, named COVID-19.1 Limited data are available for pregnant women affected by COVID-19.2 Serological tests, particularly those that provide quantitative information, are critically important to determine exposure and immunity to SARS-CoV-2 within both individuals and populations.3 Here, we completed SARS-CoV-2 serological testing of 237 parturient women at two centers in Philadelphia from April 4 to April 15, 2020. Using an assay with a 1.0% false positive rate, we show that 14/237 (5.9%) of parturient women possessed IgG and/or IgM SARS-CoV-2-specific antibodies. We found significant racial differences, with an 11.2% seropositive rate in black women and a 1.5% seropositive rate in women of other races. Seropositive women who received nasopharyngeal (NP) SARS-CoV-2 PCR (polymerase chain reaction) testing were all found to be positive. Continued serologic surveillance among pregnant women may inform perinatal clinical practices and can potentially be used to estimate seroprevalence within the community.Authors Dustin D. Flannery and Sigrid Gouma contributed equally to this work.


Subject(s)
COVID-19 , Disease
SELECTION OF CITATIONS
SEARCH DETAIL